and longitudinal spacing of the vortex street, respectively, mm; cy, vortex velocity, m/sec; T', vortex circu-
lation, m%/sec; 2, amplitude of oscillogram of density-gradient pulsations in a wake with a body behind a mo-
del; a;, amplitude of oscillogram of density-gradient pulsations in an unperturbed wake; vy, intermittence fac-
tor of the vortex street structures; T, duration of continuous vortex street, sec; ZT, total time of recording

of vortex convergence process, sec; n, frequency of vortex convergence, 1/sec; c, flow velocity, m/sec;

Vp?, mean amplitude of pulsations inbase pressure of model with a body in its wake, Pa; V{;, mean amplitude of pulsa-
tions ofbase pressure of model with an unperturbed wake, Pa; Py, base pressure of model with a body initswake,
Pa; Py, base pressure of model with an unperturbed wake, Pa; v f)%, mean amplitude of pressure pulsations
at the forward stagnation point of a cylinder located in the model wake, Pa; V] 5%0, mean amplitude of pressure
pulsations at the forward stagnation point of a cylinder located outside the model wake, Pa; xx, distance be-
tween model and a body in its wake corresponding to a resonance increase in pulsation amplitude, mm; a, speed
of sound, m/sec; M, Mach number; Re = Lc/v, Reynolds number; Sh = nH/c, Strouhal number; A = Vi* V], rel~
ative amplitude of base-pressure pulsations of the model; A; = x/ﬁ—%/x/ﬁTw, relative amplitude of pressure pulsa-
tions at the forward point of the cylinder; e = Pb/PbOa relative base pressure of model,
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D. B. Vafin, A. F. Dregalin, UDC 536.3
and A. B. Shigapov

Results are presented of a calculation of the heat radiation from a two-phase mixture in Laval
nozzles in unidimensional and two-~dimensional formulations.

The motion of a two-phase mixture in curved channels such as are present in Laval nozzles is charac-
terized by substantial longitudinal and transverse gradients of the gasdynamic parameters in the transonic and
supersonic flow regions. The radiation properties of both the gas phase and the particles of the condensed
phase depend on the gasdynamic and thermodynamic characteristics of the medium. As a result, significant
optical discontinuities occur both along and across the flow in Laval nozzles. Certain studies conducted in a
two-dimensional approximation [1-3] show that errors may result from calculating the radiation from two-
phase media in a unidimensional formulation of the problem of radiative heat transfer in the presence of sub-
stantial optical discontinuities or without allowance for the actual shape of the radiating volume.

Described below is a method of calculating the heat radiation from two-phase flows in axisymmetrical
volumes with smooth diffuse-reflecting and radiating sides of arbitrary form. To describe the radiant energy
transfer process, we used two-dimensional equations of the P;-approximation of the spherical harmonics meth-
od. Calculations in a unidimensional formulation were performed in the Py~approximation for an infinite cy-
linder.

A. M. Tupolev Kazan Aviation Institute. Translated from Inzhenerno-Fizicheskii Zhurnal, Vol. 41,
No. 1, pp. 34-39, July, 1981, Original article submitted May 27, 1980.
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Fig. 1. Chosen coordinate system.

Fig. 2. Distribution of flux densities for flows of thermal radia-
tion incident on the nozzle wall: r« = 0.15 m; a) two~dimensional
problem; b) infinite cylinder (P;-approximation); Ty = &y = 0.5;
Ty =1000°K (I~ A = 1pum;II =25 11— 4; IV = 0.5 um). qyg, MW/
m?-pm.

Figure 1 shows the diverging part of the Laval nozzle and the coordinate system for the problem being
examined. The region of integration is given by the equation of the generatrix R = f(x), the minimum cross
section Ry, and the nozzle length L.

Using the P,-approximation, we can obtain a system of differential equations in partial derivatives des-
cribing radiant energy transfer in the axisymmetrical absorbing and anisotropically scattering volumes:

0q,,(r, x)  9g,,(r, x) ,,(r, x) .
h@r + Max + 2 - Far(r, %) aUs(r, x) =0, (r, %),
(1)
e M—}-SKW {r, x) g,,(r, x) =0,
ox
oU, (r, x)
& 46(5—’1% Kia(r, %) g, (r, %) =0,
T

System (1) is supplemented by the following boundary conditions on the symmetry axis
0U;v(r, x) :0 (2)
or

and on the bounding surfaces

(1 —ry) Usnlr, x)4+2sina(l +ry) q,,(r, ) —2cosa(l+r,) g, (r, ) =4 ne, 1 (T,) at 7=R, 3)

en (1 —1) Us (r, 0+ 2(1-1) 4,7, 1) = 4 78,y (Tu) st x=0,
all—ry)Uhir, —20 Fr,) g 0 x)=4n0e,5(Te) ar x=L.

Boundary conditions (3) were obtained in the form of conditions for diffuse-reflecting and radiating noncon-
cave surfaces in [4].

With the assignment of the temperature field and radiation characteristics of the medium and bounding
surfaces, system (1) together with the boundary conditions (2) and (3) unambiguously define the flux density of

the spectral radiation a, (r, x).

To construct a difference grid, we connect the position of the boundaries with a curvilinear coordinate
system in which the boundaries of the region are the coordinate lines. Then, in the curvilinear system of co-

ordinates (¢, n), the region is a rectangle (Fig. 1).
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The equations which transform the region of integration into a rectangle are

rR
TRy 4
g o n=x. (4)

Using the above relations, we can write system (1) in curvilinear coordinates in the following manner:

| b a 9 9,
— ——— e * c U - ,
R o TR S T, TeehTm
— 5)
W, @ . WU, (
= 3 =0,
o, on % 3 P + 3 Kiagy,,
Cy, GU;V .
— 3 :07
R a§ + Kl?»q;h, !
where
R— f(x) D a= 1 df (%) .
Ro Ro dx

The boundary conditions are also described in the new coordinates.

We can obtain from system (7) an elliptic equation for the radiant energy density Us:

[ 1 +( a )QEJ 0 & U, 0 1 ol { 0o 1 U o 1 ],
R% R 0t Ku OF on K 0y R 06 Ka On - 0n Kunp o 0E ]
g a \? 1 da } oUn , 3 ‘
c ) = = [, — U] = 0.
+ o [( z ) = J T o) (6)

It was approximated by second-order finite-difference equations which can be written in the form of a system
of three-point vector equations:

*—AiUH—l +BiUi—CiUi—l = Fi . ' (7)

" Here U; and Fj are vectors consisting of M elements (M is the number of nodal points along the n axis);
A;, Bi, and Cj are three-diagonal matrices of dimension M X M. The method of matrix trial runs [5] was
used to solve the finite-difference equations.

The components of flux density q,,. and g, in the directions of the coordinates r and x are calculated
from the values found for Uj j using the second and third equations of system (5).

Let us present some results of our study of the features of the radiation of two-phase flows in Laval
nozzles. The experiments were conducted on a sample binary mixture containing particles of Al,0;. The
composition of the gas phase at the nozzle inlet was as follows, molar fractions: H, = 0.44; CO = 0.27; HCl =
0.11; N, = 0.07; H,O = 0.06; H = 0.03;'002 =0.01; Cl = 0.01. The mass fraction of the condensed phase at the
nozzle inlet ¢g = 0.33. A monotonic increase in particle size along the nozzle axis was assumed. The aver-
age-mass radius of the particles rg,; = 1.5 um at the nozzle inlet, 2.5 pm in the region of the minimum cross
section, and 6 pm at the nozzle outlet. The flow stagnation temperature at the nozzle inlet T, = 3140°K,
while the flow stagnation pressure pgy = 4 MN/m?. The Mie solution for diffraction of light on a spherical
particle [6, 7] was used to obtain the radiation characteristics of the system of polydispersed condensed-
phase particles. '
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Figure 2 shows the distribution of the flux densities q;R for the radiant flows incident to the nozzle wall
{the nozzle contour is shown inthe lower part of the figure). The solid lines correspond to the radiant-flow
distributions obtained in the two-dimensional formulation. The dashed lines denote the distributions obtained
in the unidimensional formulation in the P -épproximation. We calculated the flux densities in any given
cross section of the nozzle in the unidimensional approximation by using the radius of an infinite cylinder and
the radiation characteristics of the medium corresponding to this cross section.

It can be seen from Fig. 2 that the flux densities in the converging part of the nozzle are nearly the same
according to the one- and two~dimensional approximations. However, in the diverging part of the nozzle, the
flux densities calculated in the one-dimensional formulation at short wavelengths are considerably lower than
the values obtained in the two-dimensional formulation. The gas phase lacks molecules which absorb effec-
tively at short wavelengths, and the absorption coefficients of the particles of Al;O; condensate are low at the
low flow temperatures near the nozzle outlet. As a result, the optical density of the medium decreases and
the level of radiation of the two-phase mixture at short wavelengths is determined mainly by radiation from
the transonic flow region which is scattered on the particles, In the one-dimensional formulation, the results
correspond to the data directly in the cross section being examined. This also helps to explain the sharp dif-
ferences in the radiant flux obtained in the different approximations. An increase in the wavelength of the
radiation is accompanied by an increase in the absorption coefficient of the Al,0O; particles and an increase in
the importance of gas-phase radiation. In particular, HCI molecule radiation is detected at A = 4 pm. This
leads to an increase in the optical density of the medium, so that radiation from the higher-temperature zone
is absorbed by the layer of two-phase mixture. Thus, in Fig. 2, the distributions of radiant flux incident on
the nozzle wall at A = 4 um coincide in the different approximations.

The calculations show that the effect of radiation from a given point is manifest roughly within the range
of 10 units of optical density (Fig. 3). Figure 3 shows the change in the flux densities in the direction of the
X axis — qjﬁ\x — and the flux densities for the resulting radiation in this direction. The data correspond to the
values on the nozzle axis.

It is shown by the calculations that the flux density of the resulting radiation at the nozzle inlet g,y is
nearly zero. This circumstance is connected with the small temperature gradient in the converging part of
the nozzle with a medium having a high optical density. A substantial increase in the resulting radiation g,
occurs in the transonic flow region, where there are large gradients of the gasdynamic parameters. The
value of g, reaches a maximum a short distance from the minimum cross section in the direction of the
diverging part of the nozzle. The value of g, gradually decreases downstream, since the radiant flux density
decreases in the direction of the x axis. The difference between g, and q“;\x is small at the nozzle outlet.
This shows that radiation from the nozzle direction is significantly greater than radiation from the direction
of the free jet, i.e., q;\x > Q-

With an increase in the absolu_te dimensions of the nozzle and in both the gas-absorption lines and bands,
the resulting radiation in the direction of the x axis decreases due to an increase in the optical density of the
medium.

It can be seen from the completed calculations that the effect of the features of the radiating volume de-
pends on the optical density of the medium. When the optical density of the medjum 7> 10, the radiation from
the distant zones has little effect on the results, and the calculations can be performed in a unidimensional
formulation — particularly in the converging part of the nozzle. At 1< 10, for example, the geometry of the
volume in the diverging part of the nozzle has a substantial effect on the radiant flux. In the diverging part,
the level of radiation is also affected by the temperaturenonuniformity of the gas and condensed phases [1], Thus,
to accurately calculate the radiant flux in supersonic flow regions, it is necessary to use a two-dimensional
formulation and to take into account the temperature nonuniformity of the phases and the crystallization kine-
tics of the condensate particles.

NOTATION

dyps Upx» COmponents of radiant flux density in the directions of the coordinate axes r and x; U, ra-
diant ener gy density; 1), volume density of spontaneous radiation; Ky = oy + B\ (1~ g1), where o, is the effective ab-
sorption coefficient of the medium; 8y and gy, scattering coefficient and mean scattering cosine; c;, velocity of thera-
diation; &y and 1y, hemispherical emissivity and reflection coefficient of the bounding surfaces; Ip(Ty),
Planck function at the surface temperature Tyw; A, radiation wavelength; q&x, flux density in the positive di-
rection of the x axis; q,p, flux density of radiation incident to nozzle wall; a, angle between r axis and nor-
mal to lateral surface of nozzle; r«, minimum cross section of Laval nozzle; T = r/ry, X = X/, dimension-



less coordinates; Ry, minimum cross section of the region of integration; R, coordinates of the lateral boundary
of the region over the r axis; L, length of the region of integration over the x axis.
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DIFFUSION SLIP OF A GAS
II. APPLICATION OF THE METHOD OF THE
THERMODYNAMICS OF IRREVERSIBLE PROCESSES

S. F. Bakanov, B. V. Deryagin, UDC 533.72
and V. I. Roldugin

A method is proposed for thermodynamic calculation of the diffusion slip coefficient.

A system of equations was obtained in [1] to determine small complements to equilibrium (Maxwell)
distribution functions for the components of a binary gas mixture flowing slowly in a plane-parallel channel
when the temperature and pressurc of the gas are held constant. This system was then solved on the assump-
tion that the concentration of one of the components was trivial. This approximation made it possible to con-
vert the system of eight equations into two systems of four equations each, complete the analytical solution
to the problem, and calculate the diffusion slip coefficient Kpg by directly computing the mean mass velocity
of the gas resulting from concentration gradients of the mixture components.

Also of interest is another method of calculating the slip coefficients, based on the use of the methods
of the thermodynamics of irreversible processes [2, 3]. Correct realization of this method — apart from a
purely formal proof of the directly obtained result — makes it possible to extract important information on the
physical nature of the phenomenon and opens up possibilities for experimental measurement of the effect on a
new basis.

1. We will examine the problem of the flow of a binary mixture of gases in a plane-parallel channel
with a distance 2d between the plates. Let the plates forming the channel be brought into relative motion of a
velocity V by a force F. Given constant pressure and temperature in the channel, if we create a gradient in
the concentration of the components of the mixture in the channel, then the total entropy produced in such a
system may be written in the form

F.v
AS:’T+k<u1—uz>V”1’ 1)
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