
and longitudinal spacing of the vortex s t ree t ,  respect ively,  mm; Cv, vortex velocity,  m / s e c ;  F, vortex c i r cu -  
lation, m2/sec; ~ ,  amplitude of osc i l logram of densi ty-gradient  pulsations in a wake with a body behind a mo-  
del; a 0, amplitude of osc i l logram of densi ty-gradient  pulsations in an unperturbed wake; 7 ,  intermittence fac-  
tor  of the vortex s t ree t  s t ruc tures ;  T, duration of continuous vortex s t ree t ,  sec;  ST, total time of recording  
of vortex convergence p rocess ,  sec;  n, frequency of vortex convergence,  1 /sec ;  c, flow velocity, m / sec ;  
C~2, mean amplitude of pulsations in base pr essur  e of model with a body in its wake, Pa; ~ ,  mean amplitude of pulsa-  
tions of base p res su re  of model with an unperturbed wake, Pa;  Pb, base p res su re  of model with a body in its wake, 
Pa; Pb0, base p res su re  of model with an unperturbed wake, Pa; ~ ,  mean amplitude of p ressure  pulsations 
at the forward stagnation point of a cylinder located in the model wake, Pa; ~'P~00, mean amplitude of p r e s su re  
pulsations a t  the forward stagnation point of a cylinder located outside the model wake, Pa; x , ,  distance be-  
tween model and a body in its wake corresponding to a resonance  increase  in pulsation amplitude, mm; a, speed 
of sound, m / s e c ;  M, Mach number; Re = Lc /v ,  Reynolds number; Sh = ni l /e ,  Strouhal number; A = ( ~ / ~ ,  r e l -  

__ -2 -2 ative amplitude of b a s e - p r e s s u r e  pulsations of the model; A 1 ~T/p~00,  re la t ive  amplitude of p r e s su re  pulsa-  
tions at the forward point of the cylinder; e = pb/Pb0, re la t ive  base p r e s s u r e  of model.  
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D. B. Vafin, A. F. Dregalin, UDC 536.3 
and A. B. Shigapov 

Results are presented of a calculation of the heat radiation f rom a two-phase mixture in Laval 
nozzles in unidimensional and two-dimensional  formulations.  

The motion of a two-phase mixture in curved channels such as are  present  in Laval nozzles is cha rac -  
terized by substantial longitudinal and t r ansver se  gradients of the gasdynamic pa ramete r s  in the t ransonic  and 
supersonic flow regions.  The radiation propert ies  of both the gas phase and the part icles of the condensed 
phase depend on the gasdynamic and thermodynamic charac te r i s t i cs  of the medium. As a resul t ,  significant 
optical discontinuities occur  both along and ac ross  the flow in Laval nozzles.  Certain studies conducted in a 
two-dimensional approximation [1-3] show that e r ro r s  may result  f rom calculating the radiation f rom two- 
phase media in a unidimensional formulation of the problem of radiative heat t r ans fe r  in the presence of sub- 
stantial optical discontinuities or without allowance for the actual shape of the radiating volume. 

Described below is a method of calculating the heat radiation from two-phase flows in ax isymmetr ica l  
volumes with smooth diffuse-ref lect ing and radiating sides of a rb i t r a ry  form. To descr ibe  the radiant energy 
t ransfer  p rocess ,  we used two-dimensional  equations of the Pl-approximat ion of the spherical  harmonics  meth-  
od. Calculat ions in a unidimensional formulation were performed in the P3-approximation for an infinite cy -  
linder. 

A. M. Tupolev Kazan Aviation Institute. Translated from Inzhenerno-Fiz icheski i  Zhurnal,  Vol. 41, 
No. 1, pp. 34-39, July,  1981. Original ar t ic le  submitted May 27, 1980. 
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Fig. 2. Distribution of flux densities for flows of thermal radia- 

tion incident on the nozzle wall: r~ = 0.15 m; a) two-dimensional 

problem; b) infinite cylinder (Pa-approximation); r w = gw = 0.5; 

T w = 1000~ (I - X = l#rn;II-2; III-4; IV- 0.5 gin). qkR, MW/ 
m2.ym. 

Figure 1 shows the diverging part of the Laval nozzle and the coordinate system for the problem being 

examined. The region of integration is given by the equation of the generatrix R = f(x), the minimum cross 

section R 0, and the nozzle length L. 

Using the P1-appr~176 we can obtain a system of differential equations in partial derivatives des- 

cribing radiant energy transfer in the axisymmetrical absorbing and anisotropically scattering volumes: 

Oqz~ (r, x) 0 %  (r, x) qz~ (r, x) 
1 

- -  Or - + 3x ~ r 
+ ~z~ (r, x) c~U~ (r, x) = %~ (r, x), 

OUz (r, x) + 3 Klk (r, x) qz~ (r, x) = O, 
Ox 

(1) 

OU~ (r, x) 
Or + 3 K~x (r, x) q~ (r, x) = O. 

System (i) is supplemented by the following boundary conditions on the symmetry axis 

OU~ (r, x) _ 0 
Or 

(2) 

and on the bounding surfaces 

c~, (1 - -  r~) Ux (r, x) + 2 sincz (1 + r~) qz~ (r, x) - -  2 cos ~z (1 + r~) qz~ (r, x) = 4 z~e~l~b (T~) at 

c ~  ( l  - -  r~) U~ (r, x) + 2 (1 + rw) q~ (r, x) : 4 ~ew[~ b (Tu,) at x : 0 ,  

c~ (1 - -  r~) Uz (r, x) - -  2 (1 + r~) q~  (r, x) = 4 z~e~l~b (T~) at x = L. 

f ~ R ,  
(3) 

Boundary conditions (3) were obtained in the form of conditions for diffuse-reflecting and radiating noneon- 

cave surfaces in [4]. 

With the assignment of the temperature field and radiation characteristics of the medium and bounding 

surfaces, system (I) together with the boundary conditions (2) and (3) unambiguously define the flux density of 
the spectral radiation qL (r, :~). 

To construct a difference grid, we connect the position of the boundaries with a curvilinear coordinate 
system in which the boundaries of the region are the coordinate lines. Then, in the curvilinear system of co- 
ordinates (~, N), the region is a rectangle (Fig. I). 
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Fig. 3. Change in flux densities 

in the axial direction: i, 2) r. = 

0.i and 0:2 m, respectively; rw= 

ew = 0.5; T w = 1000~ k = 0.5tim; 

qx, MW/m2" P m" 

The e q u a t i o n s  which transform the region of integration into a rectangle are 

rR0 
~ = - - ,  ~ l = x .  

f (x) 
(4) 

Using the above relations, we can write system (i) in curvilinear coordinates in the following manner: 

1 0 a 0 Oqxx 

OU~ ac~ OU~ 

c~ OU~ 
- -  + 3 Klzq~ r = O, 

w h e r e  

_ f ( x )  ; a -  1 a f ( x )  

Ro Ro dx 

(5) 

The boundary conditions are also described in the new coordinates. 

We can obtain from system ('7) an elliptic equation for the radiant energy density U},: 

O I O U x ] +  

+ g + = o. (6) 

It was approximated by second-order finite-difference equations which can be written in the form of a system 

of three-point vector equations: 

- -  A~U~+, + B~U~ - -  C~Ui-1 = Fi �9 (7) 

Here U i and F i are vectors consisting of M elements (M is the number of nodal points along the ~ axis); 

Ai, Bi, and C i are three-diagonal matrices of dimension M • M. The method of matrix trial runs [5] was 

used to solve the finite-difference equations. 

The components of flux density qkr and qkx in the directions of the coordinates r and x are calculated 

from the values found for Ui, j using the second and third equations of system (5). 

Let us present some results of our study of the features of the radiation of two-phase flows in Laval 

nozzles. The experiments were conducted on a sample binary mixture containing particles of AI203. The 

composition of the gas phase at the nozzle inlet was as follows, molar fractions: H 2 = 0.44; CO = 0.27; HCI = 

0.ii; N 2 = 0.07; H20 = 0.06; H = 0.03; "CO 2 = 0.01; Cl = 0.01. The mass fraction of the condensed phase at the 

nozzle inlet (~s = 0.33. A monotonic increase in particle size along the nozzle axis was assumed. The aver- 

age-mass radius of the particles rs43 = 1.5 pm at the nozzle inlet, 2.5 pm in the region of the minimum cross 

section, and 6 pm at the nozzle outlet. The flow stagnation temperature at the nozzle inlet Tc0 = 3140~ 

while the flow stagnation pressure Pc0 = 4 MN/m 2. The Mie solution for diffraction of light on a spherical 
particle [6, 7] was used to obtain the radiation characteristics of the system of polydispersed condensed- 

phase particles. 
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Figure  2 shows the d i s t r ibu t ion  of the flux dens i t i es  qkR for the rad ian t  flows incident to the nozzle wall 
(the nozzle contour  is shown in the lower  pa r t  of the f igure) .  The sol id  l ines  co r respond  to the rad ian t - f low 
d i s t r ibu t ions  obtained in the two-d imens iona l  formulat ion.  The dashed l ines  denote the d i s t r ibu t ions  obtained 
in the unid imensional  formula t ion  in the P3-approximat ion .  We calcula ted  the flux dens i t i e s  in any given 
c r o s s  sec t ion  of the nozzle in the unid imensional  approx imat ion  by us ing the radius  of an infinite cy l inde r  and 
the rad ia t ion  c h a r a c t e r i s t i c s  of the medium cor re spond ing  to this c ros s  sect ion.  

It can be seen  f rom Fig.  2 that the flux dens i t i e s  in the converging pa r t  of the nozzle a re  nea r ly  the same  
accord ing  to the one-  and two-d imens iona l  approximat ions .  However ,  in the d ive rg ing  pa r t  of the nozzle ,  the 
flux dens i t i e s  ca lcula ted  in the one -d imens iona l  formula t ion  at shor t  wavelengths a r e  cons ide rab ly  lower  than 
the values obtained in the two-d imens iona l  formula t ion .  The gas phase lacks molecu les  which absorb  e f fec -  
t ive ly  at shor t  wavelengths ,  and the absorp t ion  coeff ic ients  of the p a r t i c l e s  of A1203 condensate  a r e  low at the 
low flow t e m p e r a t u r e s  nea r  the nozzle outlet .  As a r e s u l t ,  the opt ica l  dens i ty  of the medium d e c r e a s e s  and 
the level  of rad ia t ion  of the two-phase  mix ture  at sho r t  wavelengths is de te rmined  mainly  by rad ia t ion  f rom 
the t r anson ic  flow region  which is s c a t t e r e d  on the p a r t i c l e s .  In the one-d imens iona l  formula t ion ,  the r e su l t s  
co r r e spond  to the da ta  d i r e c t l y  in the c r o s s  sec t ion  being examined.  This a lso  helps to expla in  the sha rp  d i f -  
f e rences  in the r ad ian t  flux obtained in the d i f ferent  approx imat ions .  An i n c r e a s e  in the wavelength of the 
rad ia t ion  is accompanied  by an i n c r e a s e  in the absorp t ion  coeff icient  of the A1203 pa r t i c l e s  and an i n c r e a s e  in 
the impor tance  of g a s - p h a s e  radia t ion .  In p a r t i c u l a r ,  HC1 molecule  rad ia t ion  is detected at k = 4 #m. This 
leads  to an i n c r e a s e  in the opt ical  dens i ty  of the medium,  so that  rad ia t ion  f rom the h i g h e r - t e m p e r a t u r e  zone 
is absorbed  by the l a y e r  of two-phase  mix ture .  Thus,  in Fig.  2, the d i s t r ibu t ions  of rad ian t  flux incident  on 
the nozzle wall  at h = 4 gm coincide in the d i f fe ren t  approx imat ions .  

The ca lcula t ions  show that  the effect  of r ad ia t ion  f rom a given point is mani fes t  roughly within the range 
of 10 units of opt ical  dens i ty  (Fig.  3). F igu re  3 shows the change in the flux dens i t ies  in the d i r ec t ion  of the 

q+ - x axis - ,Lx and the flux dens i t i e s  for  the resu l t ing  rad ia t ion  in this  d i rec t ion .  The data  c o r r e s pond  to the 

values on the nozzle  axis .  

It is shown b y t h e  ca lcula t ions  that  the flux dens i ty  of the resu l t ing  rad ia t ion  at  the nozzle inlet qkx is 
nea r ly  zero .  This c i r c u m s t a n c e  is connected with the smal l  t e m p e r a t u r e  g rad ien t  in the converging par t  of 
the nozzle with a medium having a high opt ical  densi ty .  A subs tan t ia l  i n c r e a s e  in the r e su l t ing  rad ia t ion  qAx 
occurs  in the t r anson ic  flow region ,  where  the re  a r e  l a rge  grad ien ts  of the gasdynamic  p a r a m e t e r s .  The 
value of qkx reaches  a max imum a shor t  d i s tance  f rom the minimum c r o s s  sec t ion  in the d i r ec t ion  of the 
d iverg ing  pa r t  of the nozzle .  The value of qkx g radua l ly  d e c r e a s e s  downs t ream,  s ince  the rad ian t  flux dens i ty  
d e c r e a s e s  in the d i r ec t ion  of the x axis .  The d i f fe rence  between qkx and q+kx is s m a l l  at the nozzle outlet .  
This shows that rad ia t ion  f rom the nozzle d i r ec t ion  is s igni f icant ly  g r e a t e r  than rad ia t ion  f rom the d i r ec t ion  

+ > >  - 
of the f ree  je t ,  i . e . ,  q kx q kx" 

With an i n c r e a s e  in the absolute  d imens ions  of the nozzle and in both the g a s - a b s o r p t i o n  l ines  and bands ,  
the resu l t ing  rad ia t ion  in the d i r ec t ion  of the x axis  d e c r e a s e s  due to an inc rease  in the opt ical  dens i ty  of the 

medium.  

It can be seen  f rom the completed  ca lcu la t ions  that  the effect of the fea tures  of the rad ia t ing  volume de -  
pends on the opt ica l  dens i ty  of the medium. When the opt ical  dens i ty  of the medium T > 10, the rad ia t ion  f rom 
the d i s tan t  zones has l i t t le  effect  on the r e s u l t s ,  and the ca lcula t ions  can be pe r fo rmed  in a unidimensional  
fo rmula t ion  - p a r t i c u l a r l y  in the converging pa r t  of the nozzle.  At 7 < 10, for  example ,  the g e o m e t r y  of the 
volume in the d iverg ing  par t  of the nozzle has a subs tant ia l  effect  on the rad ian t  flux. In the d iverg ing  pa r t ,  
the level  of r ad ia t ion  is a lso  affected by  the t e r~pe ra tn renonun i fo rmi ty  of the gas a n d c o n d e n s e d p h a s e s  [1]. Thus, 
to a c c u r a t e l y  ca lcu la te  the rad ian t  flux in supe r son ic  flow reg ions ,  it is n e c e s s a r y  to use a two-d imens iona l  
formula t ion  and to take into account the t e m p e r a t u r e  nonuniformity of the phases  and the c r y s t a l l i z a t i on  kine-  

t ics  of the condensate  p a r t i c l e s .  

N O T A T I O N  

qkr ,  qkx, components  of rad ian t  flux dens i ty  in the d i r ec t ions  of the coordina te  axes r and x; U k, r a -  
diant energy density; ~ck, volume density of spontaneous radiation; Kik = c~ k +/3k(l - gl), where ~k is the effective ab- 
sorption coefficient of the medium;/~k and gl, scattering coefficient and mean scattering cosine; ck, velocity of the r a -  
diation; ew and r w, hemispherical emissivity and reflection coefficient of the bounding surfaces; Ikb(Tw), 
Planck function at the surface temperature Tw; ~, radiation wavelength; q%x' flux density in the positive di- 
rection of the x axis; qkR, flux density of radiation incident to nozzle wall; ~, angle between r axis and nor- 
mal to lateral surface of nozzle; r . ,  minimum cross section of Laval nozzle; r = r / r . ,  ~ = x / r . ,  dimension- 
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less coordinates; R0, minimum cross section of the region of integration; R, coordinates of the lateral boundary 
of the region over the r axis; L, length of the region of integration over the x axis, 
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DIFFUSION SLIP OF A GAS 

II. APPLICATION OF THE METHOD OF THE 

THERMODYNAMICS OF IRREVERSIBLE PROCESSES 

S. F. Bakanov, B. V. Deryagin, UDC 533.72 
and V. I. Roldugin 

A method is proposed for the rmodynamic  calculat ion of the diffusion sl ip coefficient.  

A s y s t e m  of equations was obtained in [1] to de te rmine  smal l  complements  to equi l ibr ium (Maxwell) 
dis t r ibut ion functions for the components  of a b inary  gas mixture  flowing slowly in a p lane -pa ra l l e l  channel 
when the t e m p e r a t u r e  and p r e s s u r e  of the gas a re  held constant.  This s y s t e m  was then solved on the a s s u m p -  
tion that the concentrat ion of one of the components was t r iv ia l .  This approximat ion  made it poss ib le  to con-  
ver t  the s y s t e m  of eight equations into two s y s t e m s  of four equations each,  comple te  the analyt ical  solution 
to the p rob lem,  and calcula te  the diffusion sl ip coefficient  KDS by d i rec t ly  computing the mean mass  veloci ty  
of the gas resul t ing  f r o m  concentra t ion gradients  of the mixture  components .  

Also of in te res t  is another  method of calculat ing the sl ip coeff ic ients ,  based on the use of the methods 
of the the rmodynamics  of i r r e v e r s i b l e  p r o c e s s e s  [2, 3]. Co r r ec t  rea l iza t ion  of this method - apar t  f r o m  a 
pure ly  fo rmal  proof  of the d i rec t ly  obtained r e su l t  - makes  it poss ib le  to ex t rac t  impor tant  informat ion on the 
physical  nature of the phenomenon and opens up poss ib i l i t ies  for  exper imenta l  m e a s u r e m e n t  of the effect  on a 
new bas i s .  

1. We will examine the p rob lem of the flow of a b inary  mix ture  of gases  in a p lane -pa ra l l e l  channel 
with a dis tance 2d between the plates .  Let the plates fo rming  the channel be brought into re la t ive  motion of a 
veloci ty V by a force  F. Given constant  p r e s s u r e  and t e m p e r a t u r e  in the channel,  if we c rea t e  a gradient  in 
the concentra t ion of the components  of the mixture  in the channel,  then the total ent ropy produced in such a 
s y s t e m  may  be wri t ten  in the f o r m  

F-V 
AS = - + k < u~-- u~ > vn~, (1) 

T 

Insti tute of Phys ica l  Chemis t ry ,  Academy of Sciences of the USSR, Moscow. Trans la ted  f rom Inzhenerno-  
Fiz ieheski i  Zhurnal ,  Vol. 41, No. 1, pp. 40-46,  Ju ly ,  1981. Original a r t i c le  submit ted June 3, 1980. 

706 0022-0841/81/4101-0706507.50�9 1982 Plenum Publishing Corpora t ion  


